328414 (28)

BE (4th Semester)
Examination, April-May 2021

Branch : AEI, EEE, EI, Et \& T

DIGITAL ELECTRONIC CIRCUITS

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Attempt all questions. Part (a) of all question is
compulsory. Attempt any two from part (b), (c) \&
(d) of all the questions.

UNIT-1
Q. 1. (a) What are unit distance code?
(b) (i) Convert (1001001.011$)_{2}$ to its equivalent decimal number.
(ii) Find 10 's complement of $(935)_{11}$.
(iii) Convert 8686 in BCD .
(iv) Convert (250.S $)_{10}$ into base 3 . 7
(c) Simplify the following Boolean function to a minimum number of literals. 7
(i) $x y+x y^{\prime}$
(ii) $(x+y)(x+y$ ')
(iii) $\quad x y z+x^{\prime} y+x y z$
(iv) $\mathrm{zx}+\mathrm{zx} \mathrm{y}^{\prime}$
(v) $(A+B)^{\prime}\left(A^{\prime}+B^{\prime}\right)^{\prime}$
(vi) $y\left(w z^{\prime}+w z\right)+x y$
(d) State and explain DeMorgan's Theorem of Boolean algebra. 7

UNIT-2

Q. 2. (a) Why and which code is used for labelling the cell of k-map ? 2
(b) Determine the minimized expression of the logic function given as
$f=\Sigma m(2,3,5,7,9,11,12,13,14,15)$
and implement through NAND logic.
(c) Draw k-map for the function

$$
\begin{aligned}
& f_{\alpha}=A D+B D+\bar{A} \bar{B} C \\
& f_{\beta}=\bar{A} B+B \bar{D} \\
& \text { and hence derive the k-map for }
\end{aligned}
$$

$$
f_{1}=f_{\alpha} \cdot f_{\beta} \text { and } f_{2}=f_{\alpha}+f_{\beta}
$$

Simplify the maps for f_{1} and f_{2} and give the resulting expression in SOP form. 7
(d) Simplify the following Boolean function by using the tabulation method: $\quad 7$

$$
f=\Sigma(0,1,2,8,10,11,14,15)
$$

UNIT-3

Q. 3. (a) Explain the term Multiplexing and Demultiplexing. 2
(b) Implement a full subtractor using two half subtractor and OR gate.
(c) Describe operation of PLA.

328414 (28)

(5)

(d) Explain the operation of four-bit Carry-Look-

Ahead adder circuit. What is the merit of
carry-look-ahead adder ?
7

UNIT-4

Q. 4. (a) Write difference between latch and flip-
flop.
(b) What is race around condition for J-K flip
flop? How it can be avoided in master slave
flip-flop?
7
(c) Design a Asyncronous Decade

Counter.
(d) Draw and describe the working of parallel-in-
serial out (PISO) shift register. Explain how a
number can be shifted in and out from such register. 7

UNIT-5

Q. 5. (a) What is tristate logic?
(b) Give comparison among various logic families.
(c) Design NAND, NOR gate using CMOS logic. 7
(d) Define the following parameters :
(i) Noice Margin

(7)

(ii) Propagation delay
(iii) Power dissipation
(iv) Speed power product.

